Determination of Ground Water Protection Areas and How They are Used

John Troiano, PhD
Research Scientist III

Department of Pesticide Regulation, California EPA

Mandate for Monitoring and Regulation

- 1985 Pesticide Contamination Prevention Act was Enacted requiring DPR (CDFA then):
 - Maintain data base for statewide well sampling and respond to reported detections
 - 2. Sample for pesticides with potential to move to ground water
 - 3. Review/regulate detected pesticides
 - Part of regulation is modifying use of detected pesticides in vulnerable areas

CALifornia VULnerability Approach

- CALVUL is an empirical approach driven by well sampling data and based on detections
- GWPAs identify vulnerable areas vulnerable areas based on soil conditions and depth to ground water
- Mitigation matched to GWPA condition Combination of soil properties and anthropogenic activities define pathway of water to ground water and subsequent mitigation measures

United States System of Surveying the Public Lands Public Lands Survey (PLS)

USGS stores geographic information on topographic maps

Section of Land = 1 Square mile area of land = 640 acres (US)

Township/Range = 6x6 square of sections of land = 36 sq. miles

One T/R
With Section
Numbers

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

Well Numbering Example

Section Broken Down Further in to 16 tracts

Tract = 40 acres

- > Letters used
- > Serpentine assignment
- ➤ No I or 0 used
- > Wells numbered sequentially

Tract Letter Assignment

D	C	В	A
E	F	G	Н
M	L	K	J
N	P	Q	R

DBCP in Wells Sampled after Suspension in 1979

DBCP in 3 Wells Sampled after Suspension in 1979

Defining Vulnerable Areas

Characteristics of Vulnerable Areas

✓ Soil Characteristics

Major Soil Conditions in California of Areas with Pesticide Detections

Approach to Define Vulnerability

- Developed a data base of detections in varied geographic conditions
- Vulnerable section identified as detection of residue in well water due to non-point source
- Enabled use of clustering methodology for developing a spatial vulnerability assessment
- Asked question:

Are there common soil characteristics between vulnerable sections?

Soils Data Base for Sections of Land

CSMUID database developed that listed all soil MUIDs in a section of land. Data taken from maps in printed surveys

Township/Range/Section: 20N1803

CSMUID

20N1803 GrA 20N1803 TuA 20N1803 DhA 20N1803 DhB 20N1803 GRA

Data Extracted from NRCS Tables

1. Composition table contains descriptive data for entire soil

DhB TuA GrA

DhA DeB

GRA Comp Table

Variables

Texture

Hardpan

Water table

Hydrologic group

Slope

Flooding

Coarse-Textured

Fine-Textured

NO HARDPAN

HARDPAN

Defining Vulnerable Areas

Characteristics of Vulnerable Areas

✓ Soil Characteristics

✓ Depth to Ground Water

Frequency of pesticide detections in wells in relation to average depth- to-groundwater for sections Fresno and Tulare Counties.

Average Sectional Spring Depth to Ground Water (feet)

Ground Water Protection Area

Section of Land with Vulnerable Soil Condition

1

Shallow Depth to Ground Water

+

Known Pathway to Ground Water

Use of Ground Water Protection Areas

➤ Identify areas that require greater regulation for protection of ground water resources

Implement management practices associated with the pathway of movement to ground water

Determinant Soil Property

Pathway and Control

Coarse, Sandy Soil –
Soils with High
Infiltration rates

Leaching with surface water that percolates To ground water Minimize Percolation

Finer-textured
Or Hardpan Present –
Soils with Low
Infiltration Rates

Residues move offsite in runoff water to sensitive sites

Improved Incorporation i.e. not by rainfall *Or*

Manage Runoff Water

Residues in Runoff Water

- During decision-making process registrants indicated an area where movement to ground water may be in rain runoff from groves
- Runoff collected in structures that inject water into subsurface soil
- Soil prone to runoff because infiltration rates low due to combination of hardpan layer and repeated use of pre-emergence herbicides
- Study conducted in cooperation with Tulare CAC staff to collect runoff from citrus and analyze

Hardpan soils

Low infiltration rates due to combination of

- hardpan presence
- annual applications
- vehicle traffic so to avoid flooding winter rain runoff is directed and injected into bore holes called ' Dry Wells'

Other pathways present – drainage ditches

Simazine and Diuron Concentration in Rain Runoff Water

Application	Sampling Interval	Concentration in Runoff Simazine Diuron	
Simazine + Diuron	(Months)	(μg/L) 65	(μg/L) 418
	2	450	100
	2	535	159
	2	934	891
	2-1/2	280	139
Simazine	2-1/2	1,130	6

Amount of Simazine in Runoff from Citrus Middles

Other Processes?

Cracking-clay Soils with Water Table

- Atrazine, Diuron, Hexazinone detections near Tracy
- Rotation of alfalfa with row crops and corn
- Hexazinone only used on alfalfa
- Soils are a cracking-clay but most fields with small ponds
- Cooperative study with San Joaquin Farm Advisors, grower, and CAC

Leaching or runoff?

Soil sampled 6 months after application with residues exposed to winter rainfall and 2 border-check irrigations. Residues retained near surface

Relative Pond and Ground Water Elevation Grownd Water Sensor Elevation = 0 FT

Effectiveness of Mitigation

- Direct measure is decreases in pesticide concentrations in wells
- Established a domestic well monitoring network
 - Voluntary
 - Wells previously contained residues
 - Long-term commitment

Well network Located in leaching and runoff GWPAs in Fresno and Tulare Counties

Diuron (ug/L) PMZ Established 1999

Summary

- CALVUL provides regional approach contiguous areas of land identified with similar geographical properties that reflect vulnerable condition.
- Facilitates site specific action mitigation measures based on pathway to ground water, which are based on major soil feature.
- Menu of mitigation options 5 options in Leaching and 9 options in Runoff GWPA.
- CALVUL is open-ended additional data layers can be added to refine spatial identification.

